Logaritma Suatu Bilangan

Tuesday, May 31, 2016

Logaritma Suatu Bilangan

logaritma
Definisi logaritma suatu bilangan diberikan sebagai berikut
glog a = p jika dan hanya jika a = gp
dengan g bilangan pokok logaritma, g>0, g≠1, a bilangan yang dicari dilogaritmanya, a>0 dan p adalah hasil logaritma (eksponen). Dari definisi diatas dapat dilihat logaritma adalah invers dari eksponen.
Sifat – sifat yang berlaku dalam logaritma telah dijabarkan diartikel sebelumnya yaitu di materi fungsi eksponen dan logaritma, coba kita lihat  sejenak sifat-sifat yang berlaku dalam logaritma diartikel tersebut untuk mengingatkan kita kembali.
sifat-sifat yang berlaku dalam logaritma tersebut dapat diterapkan kedalam soal. Perhatikan beberapa consoh soal berikut.
1. Hitunglah nilai – nilai logaritma berikut :
a. 6log 9 + 6log 8 – 6log 2
b. 9log 135 – 9log 5
Jawab :
Berdasarkan sifat logaritma glog (axb) = glog a + glog b dan glog (a:b) = glog a – glog b maka
a. 6log 9 + 6log 8 – 6log 2
6log (9.8 /2)
6log 36
6log 6²
= 2 6log 6                        (berdasarkan sifat  glog an = n glog a )
=2 . 1
=2
b.  9log 135 – 9log 5
=  9log ( 135 / 5 )
=  9log 27
=3^2log 33
= 3/2 3log 3                          ( berdasarkan sifat  g^nlog am = m/n glog a )
= 3/2
2. Jika nilai log 3= a dan log 5 = b, tentukan nilai
a. log 75
b. log 1.500
Jawab
Berdasarkan sifat logaritma glog (axb) = glog a + glog b
a. log 75 = log (3 × 5²)
                  = log 3 + log 5²
                  = a + 2b
b. log 1500 = log ( 3 × 5 × 100 )
                       = log 3 + log 5 + log 100
                       = a + b + log 10²
                       = a + b + 2

{ 0 comments... read them below or add one }

Post a Comment